Faculty Committee on Graduate and Continuing Education

Proposal to Change a Graduate Course

Department: Physics and Astronomy
Graduate Program: Science and Mathematics for Teachers
Course number and title: SMFT 555, APPLICATION OF PHYSICS FOR TEACHERS, HOW THINGS WORK

Will this course be cross-listed with an undergraduate or other graduate course? ☐ YES ☐ NO
If yes, please complete an attach to this proposal a Permission to Cross-List a Graduate Course form.

Course change(s) will go into effect: Fall 2009
Change(s) desired: Change from 4 credit hours to 3 credit hours and from 6 contact hours to 3 contact hours.

Justification for change(s): The change should be made due to staffing constraints and due to low enrollment in the recent years.

Signature of Program Director: [Signature]
Date: [Date]

Date approved by the Department: [February 10, 2009]

Signature of Department Chair: [Signature]
Date: [February 11, 2009]

Signature of Schools' Dean: [Signature]

Return form to the Graduate School Office for Further Processing

Signature of Chair of the Faculty Committee on Graduate and Continuing Education

Date: 6-15-2009

Signature of Chair of Grad Council: [Signature]
Date: 9-17-2009

Signature of the Faculty Secretary: [Signature]

If more space is needed for any section, please attach additional sheets to this form.

November 2007
APPLICATION OF PHYSICS FOR TEACHERS- HOW THINGS WORK
Course Syllabus

I CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Dr. Ana Oprisan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>Room 319, Bell South building</td>
</tr>
<tr>
<td>Phone</td>
<td>(843) 953-7582</td>
</tr>
<tr>
<td>Email</td>
<td>oprisana@cofc.edu</td>
</tr>
<tr>
<td>WWW</td>
<td>http://www.cofc.edu/~oprisana/</td>
</tr>
<tr>
<td>Lecture and lab</td>
<td>Thursdays, SC room 106, 7:00 P.M. - 10 P.M.</td>
</tr>
<tr>
<td>Office Hours</td>
<td>Thursdays, Bell South building, room 319, 4:00 P.M. - 6:40 P.M. or by appointment</td>
</tr>
</tbody>
</table>

II COURSE PHILOSOPHY

Physics 555 SFMT is the course for teachers at all levels of expertise. The emphasis of this course is in the connection of the physics to a variety of fields and its relation to the real word. The goal of this course is to help prepare students to teach physics and physical science from elementary to high school settings.

We will be studying several units in physical science. Because this is a single semester course, we will not be able to study all the subjects in physics. However, we hope to be able to study several of them in depth including Electricity, Magnetism, Heat, Energy, and Optics. This will be a hands-on, inquiry based course. We will attempt to learn as much as possible by doing. The laboratory portion of the class will be done in cooperative groups of 2-3 students.

You are primarily responsible for constructing your own knowledge in this class through performing interesting activities and investigations of scientific phenomena and through discussing these activities with your classmates. You are expected to think about the ideas that are developed from your own experiences. You should monitor changes in your initial ideas as these ideas are challenged through activities and discussion. Because you play such an important role in your own learning and of your classmates, attendance at classes is essential. If you miss a class session, you must take the initiative to find out from classmates what they learned during that class session. One lab make-up period may be offered for approved absences. In general, assignments and announcements will be posted on the WebCT course webpage. This includes, but is not limited to, homework assignments, homework solutions, syllabus changes, course rules and regulations changes and additions, dates and times of any review sessions, test solutions, and materials to be covered on class exams.

II.1 Goals

1. To understand the historical and sociological contexts that lead to major advances in physics.
2. To develop a strong understanding of the principles that forms the foundation of Physics. The emphasis will be placed on conceptual understanding rather than on memorization of definitions, formulas, etc.
3. To develop and expand physical curiosity.
4. To enhance problem-solving skills and investigation of physical phenomena.
5. To broaden an appreciation for logical qualitative and quantitative reasoning.
6. To provide opportunities for students to generalize their knowledge.
7. To enhance scientific communication skills.
8. To participate in a variety of teaching styles.

II.2 Objectives

After the successful completion of this class, the students will be able to:
1. Design experiments which examine the laws of physics.
2. Describe problems and their solutions to a variety of audiences.
3. Provide different representations for a problem (verbal, graphical, and through diagrams or equations).
4. Solve word problems.
5. Apply physical principles to novel situations.
6. Engage students in the study of the relationship of physics to other fields and relating physics to their real-life experiences.
7. Organize and manage physics activities effectively and safely in various settings.
8. Use various types of assessment strategies related to students’ needs and their level of learning and development.

II.3 Textbook and other resources

1. The textbook recommended for this class is the “Conceptual physics” by Paul Hewitt.
2. “Powerful ideas in physics” units will be provided.
3. “How things work” -the text is optional as the chapters chosen for this class are available on the Internet.
4. Substantial handouts of additional materials will be provided in a timely manner.
5. You should have a stand-alone, hand-held scientific calculator able to compute trigonometric and exponential functions.

III GRADING POLICY

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam</td>
<td>30</td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
</tr>
<tr>
<td>Graded homework</td>
<td>10</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20</td>
</tr>
<tr>
<td>Portfolio of materials appropriate for use in the pre-college classroom</td>
<td>5</td>
</tr>
<tr>
<td>WebCT discussion board activity, in class participation and quizzes</td>
<td>5</td>
</tr>
<tr>
<td>Final project</td>
<td>10</td>
</tr>
</tbody>
</table>

The grading scale is as follows:
A 90-100, B+ 86-89.9, B 80-85.9, C+ 76-79.9, C 70-75, F Below 70.
III.1 Final exam

No textbooks, notes, or any other kind of help is allowed during tests and the final exam. During the semester you will compile a short formula sheet that can be used during the tests. The final exam is comprehensive and the schedule can be found at http://www.cofc.edu/~register/courseCalendars.htm. There will be no make-ups for the tests or the final exam.

III.2 Midterm test

There will be one, 60-minute, in-class test during the semester. The test will consist of a mix of conceptual and quantitative problems, and they may be in multiple-choice format. The concept questions will be similar to the concept questions solved in class or from your “Powerful ideas in physics” assessments. The quantitative problems will be similar to the assigned homework problems and the examples solved in class or the problems given in your textbook.

III.3 Homework

Homework assignments are based on the end of the chapter problems in your textbook, and from “Powerful ideas in physics” units and from the additional handouts. Each assignment will consist mostly of quantitative evaluations with the purpose of developing your problem solving skills and sharpen your conceptual understanding of physical laws. Homework is absolutely essential in the physics learning process, perhaps more than in any other course. Extra help with homework is available during office hours.

You can solve homework problems either individually or in study groups with your classmates, but don’t rely on your classmates so much that you cannot solve problems by yourself on tests. Solutions will be available on the WebCT after the due date of each assignment.

Work problems neatly using only one side of the paper. Put your name on the top right corner on the back of the page.

In case of extenuating circumstances (major religious holidays, illness, or a valid personal emergency) you can request a deadline extension. Any such requests must be made before the due date, or will otherwise not be considered.

III.4 Labs

The lab exercise will be a combination of the topics covered in “Conceptual physics”, and handouts of other lab activities using simple hands on activities or computer-based tools. The core material in these experiments will be explored through a series of activities that consists of predictions, observations, measurements, analysis and reflection and are designed to guide students through the process of scientific inquiry and cooperative learning. The laboratory portion of the class will be done in cooperative groups of 2-3 students. Each group will return one report and the laboratory grade is essentially a group work grade.

III.5 Portfolio

It is your responsibility to keep an organized portfolio of materials ideas, laboratories, investigations, handouts and other resources that can be used in your classes or shared with other teachers for use in their classes.

III.6 WebCT and discussion board postings
WebCT is an online management course management system adopted by the College of Charleston. We will use the WebCT website (https://webct.cofc.edu/webct/public/home.pl) to post solutions, grades, assignments, and make announcements. The WebCT page will include a calendar with test dates and other important information. To log into WebCT you need your Cougar rail ID # and your 6-digit Cougar Trail PIN.

The discussion board on WebCT allows everyone in this class to interact by posting or responding to messages related to homework assignments, or any other course-related questions. You can post on the discussion board either by composing a new message (create a new thread), or by replying to an existing message. By actively participating in the discussion board, you could get help from your colleagues and instructor, and, at the same time, help me answer a question only once instead of sending multiple emails with the same answer.

III.8 Project

Your final project should be based on any topics covered in class and should address some portion of the South Carolina standards for grades K-8 or high school. Your project should include an experimental investigation using an existing kit in our lab, your school, Charleston Math and Science Hub, Charleston County School System Material resources Center, Berkley/Dorchester Math and Science Hub, Berkley County System, etc. Be prepared to give an oral presentation, and to hand in a summary of your project. Guidelines of the oral presentation, format and elements to be included in your final project will be available via the WebCT website.

IV SUPPORT RESOURCES

There are many ways to get assistance with the material in this course. Be sure to use these support resources as soon as you feel unsure about anything.

1. **Discussion board** is an online resource available through our class page on WebCT. If you know the answer to any question already posted, I encourage you to give hints to your colleagues. The virtual office hours on the discussion board is a very convenient and fast helpline.

2. **Office hours:** I will always be available during the posted office hours. If you cannot make any of the posted times, call me to make an appointment, or send me an email if you wish to see me.

3. **E-mail:** If you need help or advice, please consider posting your query on the discussion board on WebCT. This way, duplication of commonly asked questions is avoided and others in the class will benefit from your question. Questions of a personal or private nature regarding this course should be emailed to me at: obrisana@cofc.edu.

4. **Phone:** Feel free to contact me via phone with any question. My phone number is (843) 953-7582.

V COURSE POLICIES

Students are expected to attend and participate in all classes, complete all assignments in a timely and professional manner, and inform the instructor well in advance of the circumstances which result in an absence. Activities for which collaboration is not permitted are: quizzes, in-class tests, and the final exam.

V.1 Class conduct

There shall be no eating, drinking, or sleeping in the class. Cell phones, beepers, headsets and any other electronic devices that may disrupt the class must be turned off and put away prior to class unless you have a job requiring them to be on for safety (firefighter, EMT, etc.). Talking on cell phones in class is strictly prohibited. Please refer to the student handbook for additional information.

V.2 Accommodations for special needs students
The College of Charleston is committed to fully provide for the needs of enrolled or admitted students who have disabilities under Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990 (ADA). Please contact the Center for Disability Services (http://www.cofc.edu/~cds/) by phone: (843) 953-1431 and (843) 953-8284, or email them at SNAP@cofc.edu to make your needs known.

V.3 Academic honesty policy

Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity and being an accessory to acts of academic dishonesty. Please refer to the Academic Integrity and the Honor Code and the College of Charleston Student Handbook – “A Guide to Civil and Honorable Conduct,” for further information.

VI LECTURE SCHEDULE

The following is a tentative schedule for our lectures and both the topics and/or the test dates could change during the semester to accommodate unforeseen events. It is your responsibility to check both the WebCT website at https://webct.cofc.edu/webct/public/home.pl on a regular basis (at least once before each class meeting) to make sure you have the latest information. The date and time for the final exam was set by the Office of Registrar and cannot be changed.

<table>
<thead>
<tr>
<th>Date</th>
<th>Activities</th>
<th>Date</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td>Introduction to the course</td>
<td>Week 8:</td>
<td>Unit: Electricity – Electric current</td>
</tr>
<tr>
<td></td>
<td>Measurements and uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2:</td>
<td>Unit: Heat and energy</td>
<td>Week 9:</td>
<td>Unit: Electricity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3:</td>
<td>Unit: Heat and energy</td>
<td>Week 10:</td>
<td>Unit: Magnetic field. Electromagnetic interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Application: Electric motors, transformers</td>
</tr>
<tr>
<td>Week 4:</td>
<td>Unit: Heat and energy</td>
<td>Week 11:</td>
<td>Unit: Optics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5:</td>
<td>Review unit</td>
<td>Week 12:</td>
<td>Unit: Optics</td>
</tr>
<tr>
<td></td>
<td>Applications: Microwave, Refrigerators</td>
<td></td>
<td>Applications: Optical instruments, human eye</td>
</tr>
<tr>
<td>Week 6:</td>
<td>Unit: Electricity-electrostatics</td>
<td>Week 13:</td>
<td>Unit: optics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Observatory visit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Review</td>
</tr>
</tbody>
</table>

5 of 6
<table>
<thead>
<tr>
<th>Week 7</th>
<th>Week 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit: Electricity Test 1</td>
<td>Final presentations</td>
</tr>
<tr>
<td></td>
<td>December Final test</td>
</tr>
</tbody>
</table>

6 of 6
APPLICATION OF PHYSICS FOR TEACHERS - HOW THINGS WORKS
Course Syllabus

I CONTACT INFORMATION
Instructor: Dr. Ana Oprisan
Office: Room 319, Bell South building
Phone: (843) 953-7582
Email: oprisana@cofc.edu
WWW: http://www.cofc.edu/~oprisana/
Lecture and lab: Thursdays, SCIC room 106, 7:00 P.M. - 10 P.M.
Office Hours: Thursdays, Bell South building, room 319, 4:00 P.M. - 6:40 P.M. or by appointment.

II COURSE PHILOSOPHY

Physics 555 SFMT is the course for teachers at all levels of expertise. Completing this course will instill a deep understanding of physics into students. The emphasis of this course is in the connection of the physics to a variety of fields and its relation to the real world. The goal of this course is to help prepare students to teach physics and physical science from elementary to high school settings.

We will be studying several units in physical science. Because this is a single semester course, we will not be able to study all the subjects in physics. However, we hope to be able to study several of them in depth including Electricity and Magnetism, Heat, Energy, and Optics. This will be a hands-on, inquiry based course. We will attempt to learn as much as possible by doing. The laboratory portion of the class will be done in cooperative groups of 2-3 students.

You are primarily responsible for constructing your own knowledge in this class through performing interesting activities and investigations of scientific phenomena and through discussing these activities with your classmates. You are expected to think about the ideas that are developed from your own experiences. You should monitor changes in your initial ideas as these ideas are challenged through activities and discussion. Because you play such an important role in your own learning and of your classmates, attendance at classes is essential. If you miss a class session, you must take the initiative to find out from classmates what they learned during that class session. One lab make-up period may be offered for approved absences. In general, assignments and announcements will be posted on the WebCT course webpage. This includes, but is not limited to, homework assignments, homework solutions, syllabus changes, course rules and regulations changes and additions, dates and times of any review sessions, test solutions, and materials to be covered on class exams.

II.1 Goals

1. To understand the historical and sociological contexts that lead to major advances in physics.
2. To develop a strong understanding of the principles that forms the foundation of Physics. The emphasis will be placed on conceptual understanding rather than on memorization of definitions, formulas, etc.
3. To develop and expand physical curiosity.
4. To enhance problem-solving skills and investigation of physical phenomena.
5. To broaden an appreciation for logical qualitative and quantitative reasoning.
6. To provide opportunities for students to generalize their knowledge.
7. To enhance scientific communication skills.
8. To participate in a variety of teaching styles.

II.2 Objectives

After the successful completion of this class, the students will be able to:

1. Design experiments which examine the laws of physics.
2. Describe problems and their solutions to a variety of audiences.
3. Provide different representations for a problem (verbal, graphical, and through diagrams or equations).
4. Solve word problems.
5. Apply physical principles to novel situations.
6. Engage students in the study of the relationship of physics to other fields and relating physics to their real-life experiences.
7. Organize and manage physics activities effectively and safely in various settings.
8. Use various types of assessment strategies related to students’ needs and their level of learning and development.

II.3 Textbook and other resources

1. The textbook recommended for this class is the “Conceptual physics” by Paul Hewitt.
2. “Powerful ideas in physics” units will be provided.
3. “How things work” -the text is optional as the chapters chosen for this class are available on the Internet.
4. Substantial handouts of additional materials will be provided in a timely manner.
5. You should have a stand-alone, hand-held scientific calculator able to compute trigonometric and exponential functions.

III GRADING POLICY

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam</td>
<td>30</td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
</tr>
<tr>
<td>Graded homework</td>
<td>10</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20</td>
</tr>
<tr>
<td>Portfolio of materials appropriate for use in the pre-college classroom</td>
<td>5 points</td>
</tr>
<tr>
<td>WebCT discussion board activity, in class participation and quizzes</td>
<td>5 points</td>
</tr>
<tr>
<td>Final project</td>
<td>10</td>
</tr>
</tbody>
</table>

The grading scale is as follows:
A 90-100, B+ 86-89.9, B 80-85.9, C+ 76-79.9, C 70-75, F Below 70.
III.1 Final exam

No textbooks, notes, or any other kind of help is allowed during tests and the final exam. During the semester you will compile a short formula sheet that can be used during the tests. The final exam is comprehensive and the schedule can be found at http://www.cofc.edu/~register/courseCalendars.htm. There will be no make-ups for the tests or the final exam.

III.2 Midterm test

There will be one, 60-minute, in-class test during the semester. The test will consist of a mix of conceptual and quantitative problems, and they may be in multiple-choice format. The concept questions will be similar to the concept questions solved in class or from your “Powerful ideas in physics” assessments. The quantitative problems will be similar to the assigned homework problems and the examples solved in class or the problems given in your textbook.

III.3 Homework

Homework assignments are based on the end of the chapter problems in your textbook, and from “Powerful ideas in physics” units and from the additional handouts. Each assignment will consist mostly of quantitative evaluations with the purpose of developing your problem solving skills and sharpen your conceptual understanding of physical laws. Homework is absolutely essential in the physics learning process, perhaps more than in any other course. Extra help with homework is available during office hours.

You can solve homework problems either individually or in study groups with your classmates, but don't rely on your classmates so much that you cannot solve problems by yourself on tests. Solutions will be available on the WebCT after the due date of each assignment.

Work problems neatly using only one side of the paper. Put your name on the top right corner on the back of the page.

In case of extenuating circumstances (major religious holidays, illness, or a valid personal emergency) you can request a deadline extension. Any such requests must be made before the due date, or will otherwise not be considered.

III.4 Labs

The lab exercise will be a combination of the topics covered in “Conceptual physics”, and handouts of other lab activities using simple hands on activities or computer-based tools. The core material in these experiments will be explored through a series of activities that consists of predictions, observations, measurements, analysis and reflection and are designed to guide students through the process of scientific inquiry and cooperative learning. The laboratory portion of the class will be done in cooperative groups of 2-3 students. Each group will return one report and the laboratory grade is essentially a group work grade.

III.5 Portfolio

It is your responsibility to keep an organized portfolio of materials ideas, laboratories, investigations, handouts and other resources that can be used in your classes or shared with other teachers for use in their classes.

III.6 WebCT and discussion board postings
WebCT is an online management course management system adopted by the College of Charleston. We will use the WebCT website (https://webct.cofc.edu/webct/public/home.pl) to post solutions, grades, assignments, and make announcements. The WebCT page will include a calendar with test dates and other important information. To log into WebCT you need your Cougar rail ID # and your 6-digit Cougar Trail PIN.

The discussion board on WebCT allows everyone in this class to interact by posting or responding to messages related to homework assignments, or any other course-related questions. You can post on the discussion board either by composing a new message (create a new thread), or by replying to an existing message. By actively participating in the discussion board, you could get help from your colleagues and instructor, and, at the same time, help me answer a question only once instead of sending multiple emails with the same answer.

III.8 Project

Your final project should be based on any topics covered in class and should address some portion of the South Carolina standards for grades K-8 or high school. Your project should include an experimental investigation using an existing kit in our lab, your school, Charleston Math and Science Hub, Charleston County School System Material resources Center, Berkley/Dorchester Math and Science Hub, Berkley County System, etc. Be prepared to give an oral presentation, and to hand in a summary of your project. Guidelines of the oral presentation, format and elements to be included in your final project will be available via the WebCT website.

IV SUPPORT RESOURCES

There are many ways to get assistance with the material in this course. Be sure to use these support resources as soon as you feel unsure about anything.

1. Discussion board is an online resource available through our class page on WebCT. If you know the answer to any question already posted, I encourage you to give hints to your colleagues. The virtual office hours on the discussion board is a very convenient and fast helpline.

2. Office hours: I will always be available during the posted office hours. If you cannot make any of the posted times, call me to make an appointment, or send me an email if you wish to see me.

3. E-mail: If you need help or advice, please consider posting your query on the discussion board on WebCT. This way, duplication of commonly asked questions is avoided and others in the class will benefit from your question. Questions of a personal or private nature regarding this course should be e-mailed to me at: oprisana@cofc.edu.

4. Phone: Feel free to contact me via phone with any question. My phone number is (843) 953-7582.

V COURSE POLICIES

Students are expected to attend and participate in all classes, complete all assignments in a timely and professional manner, and inform the instructor well in advance of the circumstances which result in an absence. Activities for which collaboration is not permitted are: quizzes, in-class tests, and the final exam.

V.1 Class conduct

There shall be no eating, drinking, or sleeping in the class. Cell phones, beepers, headsets and any other electronic devices that may disrupt the class must be turned off and put away prior to class unless you have a job requiring them to be on for safety (firefighter, EMT, etc.). Talking on cell phones in class is strictly prohibited. Please refer to the student handbook for additional information.
V.2 Accommodations for special needs students

The College of Charleston is committed to fully provide for the needs of enrolled or admitted students who have disabilities under Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990 (ADA). Please contact the Center for Disability Services (http://www.cofc.edu/~cds/) by phone: (843) 953-1431 and (843) 953-8284, or email them at SNAP@cofc.edu to make your needs known.

V.3 Academic honesty policy

Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity and being an accessory to acts of academic dishonesty. Please refer to the Academic Integrity and the Honor Code and the College of Charleston Student Handbook – “A Guide to Civil and Honorable Conduct,” for further information.

VI LECTURE SCHEDULE

The following is a tentative schedule for our lectures and both the topics and/or the test dates could change during the semester to accommodate unforeseen events. It is your responsibility to check both the WebCT website at https://webct.cofc.edu/webct/public/home.pl on a regular basis (at least once before each class meeting) to make sure you have the latest information. The date and time for the final exam was set by the Office of Registrar and cannot be changed.

<table>
<thead>
<tr>
<th>Date</th>
<th>Activities</th>
<th>Date</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td>Introduction to the course Measurements and uncertainty</td>
<td>Week 8</td>
<td>Unit: Electricity – Electric current</td>
</tr>
<tr>
<td>Week 2</td>
<td>Unit: Heat and energy</td>
<td>Week 9</td>
<td>Unit: Electricity</td>
</tr>
<tr>
<td>Week 3</td>
<td>Unit: Heat and energy</td>
<td>Week 10</td>
<td>Unit: Magnetic field. Electromagnetic interactions Application: Electric motors, transformers</td>
</tr>
<tr>
<td>Week 4</td>
<td>Unit: Heat and energy</td>
<td>Week 11</td>
<td>Unit: Optics</td>
</tr>
<tr>
<td>Week 5</td>
<td>Review unit Applications: Microwave, Refrigerators</td>
<td>Week 12</td>
<td>Unit: Optics Applications: Optical instruments, human eye</td>
</tr>
<tr>
<td>Week 6</td>
<td>Unit: Electricity-electrostatics</td>
<td>Week 13</td>
<td>Unit: optics Observatory visit Review</td>
</tr>
<tr>
<td>Week 7</td>
<td>Week 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: Electricity Test 1</td>
<td>Final presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>December Final test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>